Graph Orientations and Linear Extensions
نویسنده
چکیده
Given an underlying undirected simple graph, we consider the set of all acyclic orientations of its edges. Each of these orientations induces a partial order on the vertices of our graph and, therefore, we can count the number of linear extensions of these posets. We want to know which choice of orientation maximizes the number of linear extensions of the corresponding poset, and this problem will be solved essentially for comparability graphs and odd cycles, presenting several proofs. The corresponding enumeration problem for arbitrary simple graphs will be studied, including the case of random graphs; this will culminate in 1) new bounds for the volume of the stable polytope and 2) strong concentration results for our main statistic and for the graph entropy, which hold true a.s. for random graphs. We will then argue that our problem springs up naturally in the theory of graphical arrangements and graphical zonotopes.
منابع مشابه
Combinatorics of Acyclic Orientations of Graphs : Algebra , Geometry and Probability
This thesis studies aspects of the set of acyclic orientations of a simple undirected graph. Acyclic orientations of a graph may be readily obtained from bijective labellings of its vertex-set with a totally ordered set, and they can be regarded as partially ordered sets. We will study this connection between acyclic orientations of a graph and the theory of linear extensions or topological sor...
متن کاملPolynomial time randomised approximation schemes for Tutte-Gröthendieck invariants: the dense case
The Tutte-Gröthendieck polynomial T (G;x, y) of a graph G encodes numerous interesting combinatorial quantities associated with the graph. Its evaluation in various points in the (x, y) plane give the number of spanning forests of the graph, the number of its strongly connected orientations, the number of its proper k-colorings, the (all terminal) reliability probability of the graph, and vario...
متن کاملPolynomial Time Randomized Approximation Schemes for Tutte-Gröthendieck Invariants: The Dense Case
The Tutte-Gröthendieck polynomial T (G;x, y) of a graph G encodes numerous interesting combinatorial quantities associated with the graph. Its evaluation in various points in the (x, y) plane give the number of spanning forests of the graph, the number of its strongly connected orientations, the number of its proper k-colorings, the (all terminal) reliability probability of the graph, and vario...
متن کاملEdge-connection of graphs, digraphs, and hypergraphs
In this work extensions and variations of the notion of edge-connectivity of undirected graphs, directed graphs, and hypergraphs will be considered. We show how classical results concerning orientations and connectivity augmentations may be formulated in this more general setting.
متن کاملAcyclic Orientations with Path Constraints
Many well-known combinatorial optimization problems can be stated over the set of acyclic orientations of an undirected graph. For example, acyclic orientations with certain diameter constraints are closely related to the optimal solutions of the vertex coloring and frequency assignment problems. In this paper we introduce a linear programming formulation of acyclic orientations with path const...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Oper. Res.
دوره 42 شماره
صفحات -
تاریخ انتشار 2017